Sinomenine Suppresses Osteoclast Formation and Mycobacterium tuberculosis H37Ra-Induced Bone Loss by Modulating RANKL Signaling Pathways
نویسندگان
چکیده
Receptor activator of NF-κB ligand (RANKL) is essential for osteoclastogenesis. Targeting RANKL signaling pathways has been an encouraging strategy for treating lytic bone diseases such as osteoporosis and rheumatoid arthritis (RA). Sinomenine (SIN), derived from Chinese medicinal plant Sinomenioumacutum, is an active compound to treat RA, but its effect on osteoclasts has been hitherto unknown. In the present study, SIN was found to ameliorate M. tuberculosis H37Ra (Mt)-induced bone loss in rats with a decreased serum level of TRACP5b and RANKL, and an increased level of osteoprotegerin (OPG). In vitro study also showed that SIN could inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, MMP-9, TRACP were inhibited by SIN in a dose dependent manner. Signal transduction studies showed that SIN could obviously reduce the expression of RANK adaptor molecule TRAF6 and down-regulate RANKL-induced NF-κB activation. It decreased the RANKL-induced p38, JNK posphorylation but not ERK1/2 posphorylation. SIN could also reduce RANKL-mediated calcium influx which is associated with TRAF6/c-Src complex. Finally, SIN suppressed RANKL induced AP-1 and NFAT transcription, as well as the gene expression of NFATc1 and AP-1 components (Fra-1, Fra-2, c-Fos). The protein expression of c-Fos and TRAF6 were also inhibited by SIN after RANKL stimulation. Taken together, SIN could attenuate osteoclast formation and Mt-induced bone loss by mediating RANKL signaling pathways.
منابع مشابه
Iguratimod prevents ovariectomy-induced bone loss and suppresses osteoclastogenesis via inhibition of peroxisome proliferator-activated receptor-γ
Iguratimod is known for its anti‑inflammatory activities and therapeutic effects in patients with rheumatoid arthritis. It has previously been demonstrated that iguratimod attenuates bone destruction and osteoclast formation in the Walker 256 rat mammary gland carcinoma cell‑induced bone cancer pain model. Therefore, it was hypothesized that iguratimod may additionally exhibit therapeutic effec...
متن کاملInhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops
Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoc...
متن کاملTrolox prevents osteoclastogenesis by suppressing RANKL expression and signaling.
Excessive receptor activator of NF-kappaB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. Thus, down-regulation of RANKL expression or its downstream signals may be a therapeutic approach to the treatment of pathological bone loss. In this study, we investigated the effects of Trolox, a water-soluble vitamin E analogue, on osteoclastogenesis and RANKL signalin...
متن کاملLIS1 Regulates Osteoclastogenesis through Modulation of M-SCF and RANKL Signaling Pathways and CDC42
We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast n...
متن کاملTLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis through differential induction of NFATc1 and NF-kappaB.
Osteolytic diseases, including rheumatoid arthritis, osteomyelitis, and periodontitis, are usually associated with bacterial infections. However, the precise mechanisms by which bacteria induce bone loss still remain unclear. Evidence exists that Toll-like receptor (TLR) signaling regulates both inflammation and bone metabolism and that the receptor activator of NF-κB ligand (RANKL) and its rec...
متن کامل